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Centre Lasers Intenses et Applications, UMR 5107 du CNRS, Université Bordeaux I, CEA, Université Bordeaux I,
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SUMMARY

We present an original and accurate unstructured cell-centred arbitrary Lagrangian–Eulerian algorithm
devoted to the simulation of multi-material fluid flows. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Arbitrary Lagrangian–Eulerian (ALE) methods were introduced by Hirt et al. [1] to retain only
the advantages of the Lagrangian and the Eulerian frameworks, to optimize accuracy, robustness,
and computational efficiency.

The goal of this paper is to describe an original cell-centred ALE strategy for multi-material
fluid flows. The main elements in an ALE simulation are an explicit Lagrangian step, a rezoning
step in which nodes of the Lagrangian grid are moved to improve the geometric quality of the
grid, and a remapping step in which the Lagrangian solution is reconstructed on the rezoned grid.
Classically, Lagrangian step uses a staggered scheme, in which velocities are vertex centred and
the other variables are cell centred [2]. A difficulty with this approach lies in the fact that one needs
special treatment for momentum remapping [3, 4]. As our Lagrangian step is fully cell centred [5],
we avoid such special treatment. Moreover, we avoid need for hourglass suppression and artificial
viscosity methods. Our rezoning step utilizes the ‘local’ minimization of nodally based objectives
functions [6–9]. Furthermore, for multi-material fluid flows, we improve the quality of interface
rezoning by repositioning it on a Bezier curve; thanks to the solution of a constraint minimization
problem. The remapping step is based on an unstructured extension of the ‘simplified face-based
donor cell’ method of [10]. The remainder of this paper is organized as follows. We first describe
the different steps of the ALE formulation. Then, computational results are given to access the
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Figure 1. Notations in a cell (left) and Bezier’s curve (right).

robustness and the accuracy of this method. Finally, we study the ablation of a plastic target due
to laser irradiation.

2. NOTATIONS

Let {c} be a collection of non-overlapping polygons whose union covers the domain filled by
the fluid. The set of the polygons vertices is denoted by {n}. We denote the set of vertices of a
particular cell c by N (c), and the set of cells that share a particular vertex n by C(n). For a node
n(x, y)∈N (c), n−(x−, y−) and n+(x+, y+) are the previous/next nodes with respect to n in the
list of vertices of cell c, see Figure 1 (left). Also, c− and c+ are the previous/next cells with
respect to c in the list of cells c, see Figure 1 (left).

Then, we will denote all quantities related to the rezoned grid by the tilde accent.

3. LAGRANGIAN STEP

The Lagrangian step is based on a second-order cell-centred Lagrangian scheme [5]. The primary
variables in this scheme are cell centred, i.e. specific volume, momentum, and total energy. The
vertex velocities and the numerical fluxes through the cell interfaces are not computed independently
contrary to standard approaches, but are evaluated in a consistent manner due to an original solver
located at the nodes. This nodal solver can be viewed as a two-dimensional extension of the
Godunov acoustic solver. The spatial second-order extension is derived using a MUSCL-type
approach. Time discretization is based on a second-order Runge–Kutta scheme.

4. REZONING STEP

This section describes the method we use to improve grid quality. The rezoning problem consists
of a ‘local’ minimization problem for the node-based objective functions that define the criteria
for grid quality [6].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1161–1166
DOI: 10.1002/fld



A CELL-CENTRED ALE METHOD 1163

Let n(x, y) be a given internal node of the grid that is to be rezoned, and let the basic functional
of our minimization procedure defined by

F(x, y) = 1

2

∑
c∈C(n)

(1 − �)
‖nn−‖2 + ‖nn+‖2

det(J )︸ ︷︷ ︸
FS

+�
(nn− · V) + (nn+ · V)

‖V‖2︸ ︷︷ ︸
FV

+ (nn− · nn+)2

det2(J )︸ ︷︷ ︸
FO

(1)

where nn− = (x− − x, y− − y) and nn+ = (x+ − x, y+ − y) are the edge vectors (see Figure
1(left)), J =[nn−,nn+] is the associated Jacobian matrix, V is the fluid velocity, and � ∈ [0, 1[ is
a parameter.

Note that the rezoned position of n(x, y) is determined by locally minimizing this local functional
of two variables, with all other nodes held fixed at their Lagrangian positions. Furthermore, we
take only a single step towards the minimum.

FS is the ‘smoothness’ functional proposed by Knupp [6], which is closely related to the
Winslow smoother [11]. In most of rezoning method, objective functions are based only on
geometric considerations. However, the physical motion of the Lagrangian grid must be taken
into account in the grid rezoning problem. One can constrain the rezoned grid to remain as close
as possible to the Lagrangian grid. This is the philosophy of the so-called ‘Reference Jacobian
Method’ developed by Knupp et al. [11]. In our rezoning strategy, we introduced an efficient
directional control FV, related to the fluid velocity [8]. The main advantage of this approach is
the ease with which it is implemented. The parameter � can be viewed as a weighting control
between geometric and physical criteria. It has to be defined by the user in the interval [0, 1[.
Finally, because grid orthogonality is not controlled by the ‘smoothness’ functional, we use the
specific functional FO [9].

For multi-material fluid flows that include interface, we resolve a constraints minimization
problem to improve the quality of the interface rezoning: min F(x(t), y(t)), where x(t) and y(t)
are defined by the Bezier’s curve:

x(t) = (1 − t)2xm + 2(1 − t)t xi + t2xp

y(t) = (1 − t)2ym + 2(1 − t)t yi + t2yp
(2)

where nm and n p are the previous/next nodes with respect to n on the interface (see Figure 1
(right)) and t ∈ [0, 1]. Moreover, ni is such that n is on the curve:

xi = x − (1 − t0)2xm − t20 xp
2(1 − t0)t0

, yi = y − (1 − t0)2ym − t20 yp
2(1 − t0)t0

(3)

where t0 is set to 0.5.
Interface can be a boundary or an internal interface between different materials. Furthermore,

during the remapping step, we set the numerical fluxes to zero through the interfaces in order to
obtain a quasi-Lagrangian interface tracking.

The next step of the procedure performs a global control and an improvement in the geometric
quality of the grid [7], when previous procedures cause the grid to become tangled or non-convex.
The need of such a procedure also exits when the Lagrangian step creates non-valid elements in
a grid.
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5. REMAPPING STEP

The remapping step is an interpolation procedure of mass, momentum, and total energy, from the
Lagrangian grid to the rezoned one. In our context, we consider that the Lagrangian step grid and
the rezoned one have the same connectivity.

For each displacement of two consecutive vertices n and n+, we can build a quadrangle
Sn,n+ = {n, ñ, ñ+, n+}, see Figure 1 (left). The signed volume of a rezoned cell is computed
as the sum of the old cell volume and all the swept volume V (Sn,n+) by the faces of c:
V (̃c) = V (c) + ∑

{n,n+} V (Sn,n+).
Let � ≡�(x, y) be a positive density function of the flow, � = �, �u, �v, �E . Let m(c) be the

mean mass value of the fluid enclosed in c, associated with the mean density value �(c). The
remapping problem is to compute in the rezoned cell c̃, an accurate approximation of m̃, in which
several conditions must be satisfied to guarantee accuracy, conservativity, linearity preservation,
and local-bound preservation [10].

The mass of the rezoned cell can be written as the mass of the corresponding old cell plus the
exchange of masses with the neighbouring cells:

m̃ =m + ∑
{n,n+}

�n,n+ (4)

where �n,n+ represents the flux exchanged through the face {n, n+} between the cell c and all the
cells swept by the displacement of this face. Here, the approximate fluxes are

�n,n+ =
∫
Sn,n+

�̄ dx dy where �̄=
{

�(c+) if V (Sn,n+)�0
�(c) if V (Sn,n+)<0

(5)

Fluxes are computed using a piecewise linear reconstruction.
This cell-centred remapping is an unstructured extension of the ‘simplified face-based donor-

cell’ method [10]. This approach does not need the computation of the intersections of the old
grid and the corresponding rezoned one, which makes this approach much more efficient.

6. NUMERICAL RESULTS

All the numerical results have been obtained such that the rezoning/remapping is performed at
each Lagrangian step, and � is set to 0.8.

6.1. Sedov test case

First, we present the propagation of a high-intensity cylindrical shock wave generated by a strong
explosion. We present the numerical results with the data and the polygonal grid defined in [3]. The
numerical solution preserves the cylindrical symmetry. One can see that in our ALE simulation,
density profile is very close to the Lagrangian solution [3]. This is due to the introduction of a
directional control of the grid rezoning, FV in Equation (1) (Figures 2 and 3).

6.2. Laser beam ablation problem

In this problem we study the ablation of a plastic target (10−2 cm× 0.1 cm) due to laser irradiation.
The peak intensity is set to 1.51015 W/cm2. The initial density is set to 1.05 g/cm3 and initial
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Figure 2. Sedov problem—Lagrangian solution. Mesh and density (left), and density profile in all the
cells versus exact solution (right) at time t = 1.
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Figure 3. Sedov problem—ALE solution. Mesh and density (left), and density profile in all the cells
versus exact solution (right) at time t = 1.

temperature is set to 369K. Here, a perfect gas EOS is used for the plastic with �= 5
3 and non-

linear thermal conduction is introduced. The initial grid is composed by 100× 50 cells. The laser
energy is released at the critical density. It produces a shock wave, followed by an ablation front.
A plasma plume expands backside. We point out in Figure 4 that Bezier’s curve improves the
boundary calculations. Furthermore, as for Sedov results, by using the directional control functional
FV we keep the high grid density of the Lagrangian calculation in the shocked region.
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Figure 4. Laser beam ablation problem. Plasma plume at t = 1.25 ns.

7. CONCLUSION

We have shown that our original unstructured cell-centred ALE algorithm gives very accurate
and efficient results on academic problems. Furthermore, our method improves the robustness
of ALE calculations on plasma physics problems. In the future we plan to incorporate interface
reconstruction in order to obtain a truly Lagrangian interface tracking.
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